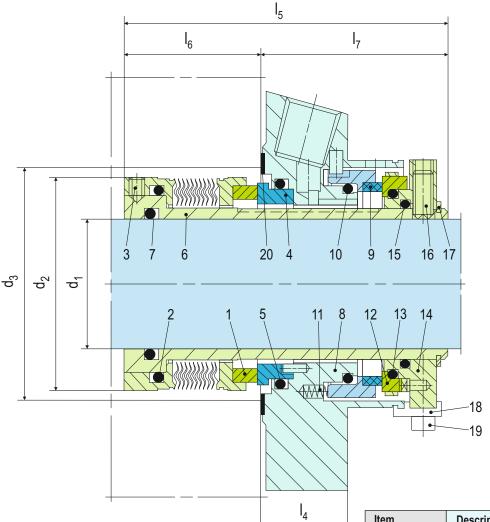
Standard Cartridge Metal Bellows Seals



Product Description

- 1. Dual seal configuration
- 2. Balanced design
- 3. Independent of direction of rotation
- 4. Cartridge construction
- 5. Metal bellows design
- 6. Designed with integrated pumping device for increased efficiency in circulation
- 7. Stationary O-ring design
- 8. Seals with API Plan 52 and API Plan

Technical Features

- 1. Ideal for use in process pump standardization
- 2. O-ring is dynamically loaded to prevent shaft damage.
- 3. Dimensional modification of the stuffing box chamber is not required due to short radial installation height
- 4. Ideal to convert and retrofit pumps with packings and large volume OEM production
- 5. Cartridge unit factory assembled for easy installation, which reduces down-
- 6. Rugged design for long operating life
- 7. Bellows design efficiently ensure selfcleaning
- 8. Suitable for high temperature applications

Note: The item numbers as depicted above are based on our technical experience and knowledge and are placed in the chronological order of their assembly procedure.

Typical Industrial Applications

Refining technology Petrochemical industry Hot media Cold media

Highly viscous media

Pumps

Special rotating equipment

Materials

Seal face: Carbon graphite (A), Silicon carbide (Q1) Seat: Silicon carbide (Q1), Tungsten carbide (U2)

Secondary seals: FPM (V), EPDM (E), FFKM (K)

Bellows: Inconel® 718 (M6) Springs: Hastelloy® C-4 (M)

Metal parts: CrNiMo steel (G), Duplex (G1)

Performance Capabilities

Shaft diameter: $d_1 = 25 ... 80 \text{ mm} (1" ... 3.15")$ Temperature : t* =-40 °C ... +220 °C

(-40°F ... + 428°F)

Pressure: $p_1 = 25 \text{ bar } (232 \text{ PSI})$

Speed = 20 m/s (66 ft/s)

Barrier fluid circulation system:

 $p_{3max} = 16 \text{ bar } (232 \text{ PSI})$

 $\Delta p (p_3 - p_1) ideal = 2 ... 3 bar (29 ... 44 PSI)$

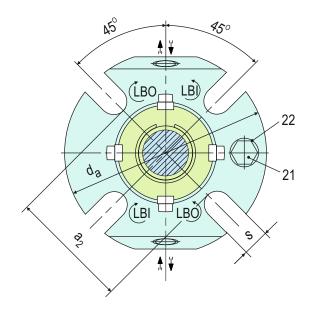
 $\Delta p (p_3-p_1) max.$

= 10 bar (145 PSI) at <120 °C (<248 °F)

= 5 bar (73 PSI) at \leq 220 °C (\leq 232 °F)

API Plan 52 (53/54)

Pump startup:


 $\Delta p (p_3 - p_1)$ max.16 bar (232 PSI) allowed

* Operating limits of O-rings to be observed

Item	Description
1	Bellows unit
2, 5, 7,10, 13, 15	O-ring
3, 16	Set screw
4	Seat
6	Shaft sleeve
8	Cover
9	Seal face
11	Spring

Item	Description
12	Seat
14	Drive collar
17	Retaining ring
18	Assembly fixture
19	HSH Cap Screw
20	Gasket
21	Screw Plug
22	Gasket

Installation, Details, Options

Product Variants

MTX9-DN

Dimensions, items and descriptions as for MTX-DN, but with optimized seal face geometry for pressurized operation according to API Plan 53/54. A barrier fluid system (e.g. Sealmatic BFS2000) is necessary.

Pressure: $p_1 = 10 \text{ bar } (145 \text{ PSI})$ Speed = 20 m/s (66 ft/s)

Barrier fluid circulation system:

 $p_{3max} = 16 \text{ bar } (232 \text{ PSI})$

 $\Delta p (p_3 - p_1) ideal = 2 ... 3 bar (29 ... 44 PSI)$

 $\Delta p (p_3 - p_1) \text{ max} = 16 \text{ bar } (232 \text{ PSI})$ API Plan 53/54

Pump startup:

 $\Delta p (p_3 - p_1) \text{ max} = 16 \text{ bar (232 PSI) allowed}$

Dimensional Data

	ions		

	Dimensions in minimeter										
d ₁	d ₂	d ₃ min.	d ₃ max.	I ₄	l ₅	I ₆	I ₇	d_a	a ₂	s	
25	45.0	47.0	51.0	25.4	87.0	33.6	53.4	105.0	62.0	13.2	
30	49.4	52.0	56.0	25.4	86.5	33.1	53.4	105.0	67.0	13.2	
32	52.3	54.5	57.0	25.4	86.5	33.1	53.4	108.0	70.0	13.2	
33	52.3	54.5	57.0	25.4	86.5	33.1	53.4	108.0	70.0	13.2	
35	54.8	58.0	61.5	25.4	86.5	33.1	53.4	113.0	72.0	13.2	
38	57.5	60.0	66.0	25.4	86.5	33.1	53.4	123.0	75.0	14.0	
40	58.8	62.0	68.0	25.4	86.3	32.9	53.4	123.0	77.0	14.2	
43	61.9	64.5	70.5	25.4	86.5	33.1	53.4	133.0	80.0	14.2	
45	65.0	68.5	73.0	25.4	86.5	33.1	53.4	138.0	82.0	14.2	
48	68.4	71.0	75.0	25.4	86.8	33.4	53.4	138.0	85.0	14.2	
50	70.0	73.0	78.0	25.4	87.2	33.8	53.4	148.0	87.0	14.2	
53	71.9	75.0	87.0	25.4	87.4	34.0	53.4	148.0	97.0	18.0	
55	74.6	77.0	83.0	25.4	87.0	33.6	53.4	148.0	92.0	18.0	
60	83.9	87.0	91.0	25.4	88.2	34.8	53.4	157.0	102.0	18.0	
65	87.5	90.0	98.5	25.4	88.1	34.7	53.4	163.0	109.3	18.0	
70	93.0	98.0	108.0	25.4	89.6	36.2	53.4	178.0	118.3	18.0	
75	96.8	101.6	118.0	28.0	107.4	43.5	63.9	190.0	129.0	18.0	
80	104.7	108.0	124.0	28.0	106.8	42.9	63.9	195.0	135.0	18.0	

Note: Additional technical & dimensional information will be provided on request.